<table>
<thead>
<tr>
<th>unknown pop. stty. of intrest</th>
<th>μ_d = pop. mean diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimate of μ_d</td>
<td>$d = 0.20$ cm</td>
</tr>
<tr>
<td>give or take for μ_d.</td>
<td>$\bar{d} = 0.01$ cm</td>
</tr>
<tr>
<td>95% CI</td>
<td>$\bar{d} \pm (t_{0.05} \cdot \text{SE} (\bar{d}))$</td>
</tr>
<tr>
<td>for μ_d</td>
<td>$0.20 \pm (2.145) (0.01)$ cm</td>
</tr>
</tbody>
</table>

$\text{SE} 0.01 \text{cm}$

95% t$_{n-1} = t_{14}$ of \bar{d}, accounting for μ_d, uncertainty in \bar{d}

0.18 0.20 cm 0.22 0.145

The diff. between $\bar{d} = 0.20$ cm

A $\mu_d = 0.0$ cm is statsis. (0 not in CI)

\downarrow hard to attribute to unlucky sampling

\[\text{probably real} \]
Disc. sec. f

p. 67 # 1

practij

\[\frac{8.75}{50} - \frac{9.74}{50} \]

\[\frac{9.74}{50} \]

\[\frac{9.74}{50} \] = -10.2%

2 indep. samples, 249 nt.
cont. aut cune \(\rightarrow \) like dysphonia logop.