AMS 7 - Lecture 4.26.18

This Time: Conditional Probability
Next Time: Prop. Models for sums

* Read DD ch. 1-3 (A) & DD ch. 1-9 (B)
 - Today → IN pg. 95-118
 - Next Time → LN pg. 119-126

* What's the probability of A?
 \[P(A) = \frac{\text{Area of } A}{\text{Area of } A + B} \approx 100\% \]

* What's the probability of A given B?
 \[P(A | B) = \frac{\text{Overlap of } A \& B}{\text{Area of } B} \]

* Definition (A. de Moivre) - 1705
 \[P(A | B) = \begin{cases}
 \frac{P(A \text{ and } B)}{P(B)} & \text{if } P(B) > 0 \\
 \text{Undefined} & \end{cases} \]

R-37
 \[P(A | B) = \frac{P(A \text{ and } B)}{P(B)} \rightarrow P(B) \cdot P(A | B) = P(A \text{ and } B) \]
 \[P(B | A) = \frac{P(A \text{ and } B)}{P(A)} \rightarrow P(A) \cdot P(B | A) = P(A \text{ and } B) \]
 \[P(Y_1 = 2 \text{ and } Y_2 = 2) \stackrel{\text{SRS}}{=} P(Y_1 = 2) \cdot P(Y_2 = 2 | Y_1 = 2) \]
 \[= \frac{1}{3} \cdot 0 = 0 \]
\[* P(y_1 = 2 \text{ and } y_2 = 2) \xrightarrow{\text{I.I.D.}} P(y_1 = 2) \cdot P(y_2 = 2 | y_1 = 2) \]
\[= P(y_1 = 2) \cdot P(y_2 = 2) \]

Definition

Let \(A \) and \(B \) are independent if and only if information about \(A \) does not change chances of \(B \), and vice versa: \(P(A \& B) = P(A) \cdot P(B) \)

* Tay-Sachs Case Study*

\[P(1 \text{ or more T-S babies in family of 5, both parents carriers}) \]
\[= 1 - P(0 \text{ T-S babies}) \]
\[= 1 - P(\text{1st baby Not T-S AND 2nd baby Not T-S AND ... AND 5th baby Not T-S}) \]
\[\text{by independence:} \]
\[= 1 - P(\text{Not T-S on 1st}) \cdot P(\text{Not T-S on 2nd}) \cdot \ldots \cdot P(\text{Not T-S on 5th}) \]
\[= 1 - (1 - \frac{1}{4}) \cdot (1 - \frac{1}{4}) \cdot \ldots \cdot (1 - \frac{1}{4}) \]
\[= 1 - (1 - \frac{1}{4})^5 = 0.760 = 76.0\% \]

* UCLA Marijuana Case Study*

\[
\begin{array}{c|c|c|c|c}
Y & X & \text{X = Predictor (Female or Male)} & \text{Female (1), Male (0)} & \text{Yes (1), No (0)} \\
0 & 0 & & & \\
1 & 0 & & & \\
\vdots & \vdots & & & \\
1 & 1 & & & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
Y & X & \text{MLP} \\
0 & 0 & \text{5} \\
0 & 1 & \text{20} \\
1 & 0 & \text{52} \\
1 & 1 & \text{29} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{2x2 contingency table} & \text{Female} & \text{Male} \\
\text{Yes} & 29 & 20 \\
\text{No} & 52 & 5 \\
\text{n} & 81 & 25 \\
\end{array}
\]

\[\Delta \text{2x2 contingency table} \]
\[\rightarrow \text{Categorical data analysis} \]

\[\text{Female} \ 29 + 20 = 49 \]
\[\text{Male} \ 52 + 5 = 57 \]
\[n = 106 \]
P(Y) = 81/100 = 76%
P(Y|F) = 29/49 = 59.1%
P(Y|M) = 52/57 = 91%

Question: Are gender & MLP independent or dependent in this data set? DEPENDENT

* Gender & MLP are associated because

- 76%: Yes
- 59%: Male
- 91%: Female

huge difference in practical terms.

* Practically Significant (highly PractSig)

Death Penalty Case Study
Y (outcome): death penalty or not
X (treatment): white vs. black defendant

→ Basic design: observational study

- enemy: bias from PCF

L → Leading PCF

- Ethnicity of victim
- (white vs. black)

* How to defeat the PCF?

L → Hold it constant in relating X & Y

<table>
<thead>
<tr>
<th></th>
<th>Death Penalty</th>
<th>Defendant</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>DP</td>
<td>White</td>
<td>19/100</td>
</tr>
<tr>
<td>Black</td>
<td>DP</td>
<td>White</td>
<td>17/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P(DP) = 36/320 = 11%
Middle Table

\[P(DP|VW) = \frac{30}{214} \approx 14.0\% \]

White victim

\[P(DP|DW \text{ AND } VW) = \frac{19}{151} \approx 12.6\% \]

\[P(DP|DB \text{ AND } VW) = \frac{11}{103} \approx 17.5\% \]

Bottom Table

\[P(DP|VB) = \frac{6}{112} \approx 5.4\% \]

Black victim

\[P(DP|VB, DW) = \frac{0}{9} = 0\% \]

\[P(DP|VB, DB) = \frac{6}{103} \approx 5.8\% \]

> Why did the Simpson's Paradox arise?

1. Victim usually knows killer
2. White people mostly hang around white people & black people with black, therefore, whites mostly kills whites & blacks kill blacks but if victim is white, much more likely to get death penalty, therefore, it will look like white defendants get DP more than "they really are"

Probability models for sums & means

* Roulette (38 possibilities) ELM \(\sqrt{\&} \gg \text{IID} \ll \)

\[P(\text{Win on a single play, single #}) = \frac{1}{38} \approx 2.5\% \]

Split = 2/38 = 5%
Possible outcome on a single spin

Population

\[
\begin{pmatrix}
-1 \\
-1 \\
\vdots \\
+35 \\
-1 \\
\vdots \\
-1
\end{pmatrix}
\]

Sample observed spins

\[
\begin{pmatrix}
\text{mostly -1} \\
\vdots \\
\text{occasionally +35}
\end{pmatrix}
\]

n = 1,000

Single # 6

\[
38 = \frac{37(-1) + (+35)}{38}
\]

\[\text{mean } M = \frac{-2}{38} = -0.05\]

\[\text{negative}
\]

\[\sigma = \text{sigma}
\]

\[\text{On average, I expect to win } M = -0.05 \text{ on each $1.00 bet for a single #}
\]